Предмет: Геометрия,
автор: nadylnsk
помогите пожалуйста построить чертёж к задаче. Я считаю что сфера не может так проходить.
Ребро правильного тетраэдра АВСД равно 2. Найти радиус сферы , проходящей через вершины А и В и центр граней АВД и АСД
Ответы
Автор ответа:
0
Легко показать, что центр лежит на высоте тетраэдра из вершины D (на прямой, содержащей эту высоту). Если M - середина AB, а N - середина BC, E - центр ABD, F - центр ACD, то плоскость ADN перпендикулярна EF и делит этот отрезок пополам, точно так же плоскость CDM перпендикулярна AB и делит её пополам. Поэтому центр лежит на пересечении этих плоскостей, то есть на высоте тетраэдра.
Удивительно :), но задача решается на много проще, если к уже заявленным точкам A B E F, через которые проходит сфера, добавить еще точку С и точку G - центр грани BCD.
Сечения сферы параллельными плоскостями ABC и EFG - окружности, описанные вокруг правильных треугольников ABC (с стороной 2, радиус описанной окружности 2/√3)) и EFG.
Само собой, центры этих треугольников (и окружностей) тоже лежат на высоте тетраэдра из точки D.
Расстояние между плоскостями этих сечений-окружностей равно d = H/3, где H = 2*√(2/3); - высота тетраэдров, то есть d = (2/3)*√(2/3);
Стороны треугольника EFG соединяют середины линий, проведенных через центры боковых граней параллельно основанию. То есть они равны (1/2)*(2/3)*2 = 2/3; радиус описанной окружности равен r2 = r1/3;
Таким образом, задача теперь звучит так. Надо найти радиус сферы, если известны радиусы двух параллельных сечений этой сферы r1 и r2 и расстояние между ними d;
Пусть x - расстояние от центра сферы до плоскости ABC, R - радиус сферы.
x^2 + r1^2 = R^2;
(x + d)^2 + r2^2 = R^2;
Откуда легко найти x = (r1^2 - r2^2 - d^2)/(2*d); легко найти x = √(2/3); то есть это половина высоты тетраэдра.
То есть центр сферы лежит ниже плоскости ABC на расстоянии H/2 от неё.
R = √2;
Удивительно :), но задача решается на много проще, если к уже заявленным точкам A B E F, через которые проходит сфера, добавить еще точку С и точку G - центр грани BCD.
Сечения сферы параллельными плоскостями ABC и EFG - окружности, описанные вокруг правильных треугольников ABC (с стороной 2, радиус описанной окружности 2/√3)) и EFG.
Само собой, центры этих треугольников (и окружностей) тоже лежат на высоте тетраэдра из точки D.
Расстояние между плоскостями этих сечений-окружностей равно d = H/3, где H = 2*√(2/3); - высота тетраэдров, то есть d = (2/3)*√(2/3);
Стороны треугольника EFG соединяют середины линий, проведенных через центры боковых граней параллельно основанию. То есть они равны (1/2)*(2/3)*2 = 2/3; радиус описанной окружности равен r2 = r1/3;
Таким образом, задача теперь звучит так. Надо найти радиус сферы, если известны радиусы двух параллельных сечений этой сферы r1 и r2 и расстояние между ними d;
Пусть x - расстояние от центра сферы до плоскости ABC, R - радиус сферы.
x^2 + r1^2 = R^2;
(x + d)^2 + r2^2 = R^2;
Откуда легко найти x = (r1^2 - r2^2 - d^2)/(2*d); легко найти x = √(2/3); то есть это половина высоты тетраэдра.
То есть центр сферы лежит ниже плоскости ABC на расстоянии H/2 от неё.
R = √2;
Автор ответа:
0
Вот если вы разберетесь в этом - вам больше не страшны будут такие задачи :))))))) Чтобы разобраться, вам понадобится решение вот этой задачи http://znanija.com/task/6882423
Похожие вопросы
Предмет: История,
автор: dararomanisina
Предмет: Қазақ тiлi,
автор: aygulie1982
Предмет: География,
автор: MMorkovkaA
Предмет: Математика,
автор: Аноним
Предмет: Геометрия,
автор: Goga666