Предмет: Геометрия,
автор: PandaGeroi
В прямоугольном треугольнике угол между высотой и медианой, проведенными из вершины прямого угла равен 20 градусов. Найдите градусную меру большего из острых углов этого треугольника.
Ответы
Автор ответа:
0
Дано: Δ АВС,
∠
С=90° СH ⊥ AB, AM=MB
∠HCM=20°
Δ CHM - прямоугольный (СН ⊥ AB),∠HCM=20°
Сумма острых углов прямоугольного треугольника равна 90° ,
значит ∠HMС=90°-20°=70°
∠CMВ- смежный с углом HMC. Cумма смежных углов равна 180°
∠CMВ=180 °-70°=110°
Треугольник СМВ равнобедренный СМ=МВ.
Медиана прямоугольного треугольника, проведенная из вершины прямого угла равна половине гипотенузы.
∠МВС= ∠ВCM=(180°-110°)/2=35°
Значит острый угол АВС прямоугольного треугольника АВС равен 35°
Сумма острых углов прямоугольного треугольника равна 90°. Второй острый угол
САВ равен 90°-35°=55°
Ответ. 55°- больший острый угол прямоугольного треугольника
∠HCM=20°
Δ CHM - прямоугольный (СН ⊥ AB),∠HCM=20°
Сумма острых углов прямоугольного треугольника равна 90° ,
значит ∠HMС=90°-20°=70°
∠CMВ- смежный с углом HMC. Cумма смежных углов равна 180°
∠CMВ=180 °-70°=110°
Треугольник СМВ равнобедренный СМ=МВ.
Медиана прямоугольного треугольника, проведенная из вершины прямого угла равна половине гипотенузы.
∠МВС= ∠ВCM=(180°-110°)/2=35°
Значит острый угол АВС прямоугольного треугольника АВС равен 35°
Сумма острых углов прямоугольного треугольника равна 90°. Второй острый угол
САВ равен 90°-35°=55°
Ответ. 55°- больший острый угол прямоугольного треугольника
Приложения:
Автор ответа:
0
..................................................
Приложения:
Похожие вопросы
Предмет: Алгебра,
автор: kuatovasabina0
Предмет: Русский язык,
автор: dulalvdoy
Предмет: Английский язык,
автор: princesssss60
Предмет: Алгебра,
автор: Викккккк
Предмет: Химия,
автор: Настюша142013