Предмет: Геометрия,
автор: yzon
Треугольник ABC, стороны которого 13 см, 14 см и 15 см, разбит на три
треугольника отрезками, соединяющими точку пересечения медиан M с вершинами треугольника. Найдите площадь
треугольника BMC?
Ответы
Автор ответа:
0
Площадь треугольника АВС вычислим по формуле Герона.
р=(13+14+15)/2=21
С другой стороны площадь треугольника равна половине произведения основания на высоту. Пусть ВС основание, высота АD=H
ВС·H/2=84⇒ 14·H=168, значит H=12
Проведем h=MK треугольника ВМС. Основание ВС=14.
Чтобы найти h =MK рассмотрим треугольник АDE, АЕ- медиана к стороне ВС. Медиана в точке М-точке пересечения медиан -делится в отношении 2:1, считая от вершины. Значит АМ:МЕ=2:1, а АЕ:МЕ=3:1
Δ МКЕ подобен Δ ADE:
АЕ:МЕ=AD:MK ⇒
H=3h
h=H/3=12/3=4
S(ΔBMC)=14·4/2=28
Высота треугольника ВМС в три раза меньше высоты АD треугольника АВС.
Значит и площадь этого треугольника в три раза меньше.
S(ΔВМС)=1/3 S(ΔABC)=84/3=28 кв см.
Между прочим и площади двух других треугольников тоже 28 кв. см
р=(13+14+15)/2=21
С другой стороны площадь треугольника равна половине произведения основания на высоту. Пусть ВС основание, высота АD=H
ВС·H/2=84⇒ 14·H=168, значит H=12
Проведем h=MK треугольника ВМС. Основание ВС=14.
Чтобы найти h =MK рассмотрим треугольник АDE, АЕ- медиана к стороне ВС. Медиана в точке М-точке пересечения медиан -делится в отношении 2:1, считая от вершины. Значит АМ:МЕ=2:1, а АЕ:МЕ=3:1
Δ МКЕ подобен Δ ADE:
АЕ:МЕ=AD:MK ⇒
H=3h
h=H/3=12/3=4
S(ΔBMC)=14·4/2=28
Высота треугольника ВМС в три раза меньше высоты АD треугольника АВС.
Значит и площадь этого треугольника в три раза меньше.
S(ΔВМС)=1/3 S(ΔABC)=84/3=28 кв см.
Между прочим и площади двух других треугольников тоже 28 кв. см
Приложения:
Похожие вопросы
Предмет: Алгебра,
автор: Аноним
Предмет: Геометрия,
автор: bajzanovkarim
Предмет: Физкультура и спорт,
автор: chyzoiartem13
Предмет: Алгебра,
автор: mamarogka23
Предмет: Алгебра,
автор: Hurrem