Предмет: Геометрия, автор: Lemv666

в треугольнике ABC внешние углы при вершинах A и B равны. Докажите , что 2AC больше AB.

Ответы

Автор ответа: Hrisula
0
В треугольнике ABC внешние углы при вершинах A и B равны. Докажите , что 2AC больше AB.
Если внешние углы при вершинах равны, то и внутренние углы, как смежные с внешними, равны. 
Следовательно,  углы А и В равны и треугольник АВС равнобедренный с основанием АВ. 
Одно из основных свойств треугольника гласит :
Любая сторона треугольника меньше суммы двух других сторон и больше их разности. 
Так как АС=ВС, 2 АС=АС+ВС.
 АС+ВС больше стороны АВ, иначе треугольник не мог бы получиться - стороны просто не сошлись бы и не образовали третий угол. 
Следовательно,  2 АС больше АВ, что и требовалось доказать. 
Похожие вопросы