Предмет: Математика,
автор: CrazyShadow
Диагонали АС и BD трапеции ABCD пересекаются в точке О. Площади треугольников AOD и BOC равны соответственно 25 и 16. Найдите площадь трапеции.
Ответы
Автор ответа:
0
ΔАOD подобен ΔBOC.
т.к. отношение площадей равно квадрату коэффициента подобия, то BC/AD = 4/5. Пусть АD=x, тогда BC=4х/5.
Проведем из О перпендикуляры к основаниям: ОК - перпендикуляр к ВС, ОF - перпендикуляр к AD.
Пусть ОК=n, ОF=m
S ΔВОС= 1/2*ОК * ВС = 1/2*ОК*4х/5 = 2х/5*ОК
16=2х/5*ОК, откуда x*ОК = 40
S ΔAOD=1/2*OF * AD = x/2*ОF,
25= x/2*ОF, откуда x*OF=50
Высота трапеции KF=OK+OF
Площадь трапеции равна произведению полусуммы оснований на высоту
Cумма оснований AD+BC=x+4x/5=9x/5
Площадь трапеции S=1/2*9x/5* (OK+OF) = 9/10 *(x*OK + x*OF) = 9/10 (40 + 50) = 81
т.к. отношение площадей равно квадрату коэффициента подобия, то BC/AD = 4/5. Пусть АD=x, тогда BC=4х/5.
Проведем из О перпендикуляры к основаниям: ОК - перпендикуляр к ВС, ОF - перпендикуляр к AD.
Пусть ОК=n, ОF=m
S ΔВОС= 1/2*ОК * ВС = 1/2*ОК*4х/5 = 2х/5*ОК
16=2х/5*ОК, откуда x*ОК = 40
S ΔAOD=1/2*OF * AD = x/2*ОF,
25= x/2*ОF, откуда x*OF=50
Высота трапеции KF=OK+OF
Площадь трапеции равна произведению полусуммы оснований на высоту
Cумма оснований AD+BC=x+4x/5=9x/5
Площадь трапеции S=1/2*9x/5* (OK+OF) = 9/10 *(x*OK + x*OF) = 9/10 (40 + 50) = 81
Похожие вопросы
Предмет: История,
автор: konstantinsimykin
Предмет: Математика,
автор: Suzi2220
Предмет: Алгебра,
автор: GLADIILYS
Предмет: История,
автор: Quiqle
Предмет: Информатика,
автор: Kochetkova991