Предмет: Алгебра, автор: kittycat13

Сколько критических точек имеет функция y=cosx+sinx на промежутке [0; 2π]

Ответы

Автор ответа: Аноним
0
применим метод вспомогательного угла:
y=sqrt(2)*(sqrt(2)/2 *cos(x)+sqrt(2)/2 *sin(x))=
sqrt(2)*(sin(pi/4)*cosx +cos(pi/4)*sin(x)
y=sqrt(2)*sin(x+pi/4) точки минимума и максимума функции находятся там где sin(x+pi/4)=1 и sin(x+pi/4)=-1
1)sin(x+pi/4)=1 x+pi/4=pi/2+2pi*n n-целое число
x=pi/4+2pi*n найдем все значения на промежутке от 0 до 2pi 0<=pi/4+2pi*n<2pi тут очевидно что целое решение единственно n=0
x=pi/4 2)sin(x+pi/4)=-1 x+pi/4=-pi/2+2pi*n x=-3pi/4+2pi*n тут очевидно что подойдут n=1 и n=2
тогда всего 3 критические точки
Ответ:3

Автор ответа: Аноним
0
А нет стойте для 2 случая n=2 не подходит я ошибся :Ответ: 2 критические точки
Похожие вопросы
Предмет: Биология, автор: tatarenkovika08