Предмет: Геометрия, автор: Esculap

диагональ квадрата АБСД равна 10 см отрезок АМ перпендикулярен плоскости квадрата угол АБМ равен 60 % найдите расстояние от точки М до прямой BD

Ответы

Автор ответа: mirnay24
0
1. Найдем длину отрезка МВ. Т. к. треугольник АМВ прямоугольный (АМ перпендикулярна АВ) , то МВ является гипотенузой этого треугольника. Тогда по определению косинуса: 
cos(AMB) = AB/MB 
MB = AB/cos(60°
2. Проведем из точки М перпендикуляр на диагональ BD. Пусть он пересечется с диагональю в точке К. Докажем что точка К является серединой диагонали BD. 
Проведем отрезок МD. Т. к. треугольники АВМ и АDM равны (по сторонам АМ и АB = AD и прямому углу) , то MB = MD. Тогда треугольники MBK и MDK равны по сторонам MK, MB = MD и прямому углу K. Соответственно ВК = DK. 
3. Найдем длину диагонали BD. Т. к. треугольник ABD прямоугольный, то по теореме Пифагора: 
BD = (10^2 + 10^2) = 2*√50 
Соответственно BK = √50 
4. Теперь рассмотрим прямоугольный треугольник МВК. Длины сторон МВ и ВК Вам уже известны. По теореме Пифагора находите длину стороны МК, равную расстоянию от точки М до прямой ВD. 
Похожие вопросы
Предмет: Алгебра, автор: khukhu94