Предмет: Алгебра,
автор: MavrinaUyla
Определить под каким углом к оси Оx наклонена касательная к кривой
y=x³-x²-7x+6 в точке (2;-4)
Нужно подробное решение
Ответы
Автор ответа:
0
Вычислим производную f'(x).
f'(x) = 3x^2 - 2x - 7
Теперь вычисляем f'(x0) = f'(2) = 12 - 4 - 7 = 1 = tg a
Мы нашли тангенс угла наклона, тогда сам угол равен 45 градусам.
f'(x) = 3x^2 - 2x - 7
Теперь вычисляем f'(x0) = f'(2) = 12 - 4 - 7 = 1 = tg a
Мы нашли тангенс угла наклона, тогда сам угол равен 45 градусам.
Автор ответа:
0
Вот именно. Исправьте все решение!
Автор ответа:
0
в основном не так просто всё бывает, когда точка на графике лежит )
Похожие вопросы
Предмет: Физика,
автор: sasavola78
Предмет: Русский язык,
автор: disapitr
Предмет: Английский язык,
автор: sota15012017
Предмет: Математика,
автор: tigr9560
Предмет: Химия,
автор: ilovestunriding