Предмет: Алгебра, автор: уауууу

найти площадь фигуры ограниченная линиями у=х2+4, у= -х2+2х+4

Ответы

Автор ответа: Geograph
0
x²+4=-x²+2x+4
x²+x²-2x+4-4=0
2x²-2x=0
2x(x-1)=0
x1=0
x2=1
Мы нашли пределы интегрирования, теперь берем определенный интеграл от 0 до 1 от функции intlimits^1_0 { (- x^{2} +2x+4)- x^{2} -4} , dx= intlimits^1_0 { (2x-2 x^{2}  }) , dx=  x^{2} - frac{2 x^{3} }{3}

x²- 2x³/3  подставляем наши пределы  1²-(2*1³/3)-(0²-2*0³/3)= 1-2/3= 1/3
Площадь фигуры равна 1/3! Нарисуй графики и убедишься что площадь меньше одной клеточки.

Похожие вопросы