Предмет: Геометрия,
автор: Няшичка64
НАПИШИТЕ ПОЖАЛУЙСТА!!! треугольник ABC-равнобедренный с основанием АС, BD - его высота. Найдите боковую сторону треугольника, если АО=18 см, а ОМ=12 см, ВМ=16 см.
Ответы
Автор ответа:
0
BD - высота равнобедренного треугольника, проведенная к основанию, значит и биссектриса.
Биссектриса треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
В треугольнике АВМ ВО - биссектриса, значит
АО : ОМ = ВА : ВМ
ВА = АО · ВМ / ОМ = 18 · 16 / 12 = 24 см
Доказательство свойства биссектрисы (на всякий случай)
Проведем прямую АК║BD, К - точка пересечения этой прямой с прямой ВС.
∠DBA = ∠KAB как накрест лежащие (AK ║ BD, AB секущая),
∠CBD = ∠СКА как соответственные (АК ║ BD, СК секущая),
так как ∠DBA = ∠CBD, то и ∠КАВ = ∠СКА, тогда
ΔАВК равнобедренный, АВ = ВК.
По обобщенной теореме Фалеса:
АО : ОМ = КВ : ВМ или
АО : ОМ = АВ : ВМ.
Приложения:
Похожие вопросы
Предмет: Қазақ тiлi,
автор: abdraimovabahor
Предмет: География,
автор: gorkijyt
Предмет: Английский язык,
автор: Аноним
Предмет: География,
автор: liyaслива
Предмет: Алгебра,
автор: qwa111