Предмет: Геометрия,
автор: VikysyaT
В прямоугольном треугольнике угол между высотой и медианой, проведенными из вершины прямого угла равен 30 градусов, а меньший катет - 6 см. Найти гипотенузу и больший катет
Ответы
Автор ответа:
0
Треуг АВС -прямоугольный, уголС=90
СН-высота, См-медиана
Угол МСН=30, следовательно угол СМН=90-30=60
УголАМС=180-60=120
Медиана прямоугольного треугольника равна половине гипотенузы, следовательно треугАМС-равнобедренный, следовательно уголА=углуАСМ=30
А значит уголАВС=60
sin30=CB/AB=1/2
1/2=6/AB
AB=12
sin60=AC/AB
sin60=√3/2
√3/2=AC/12
AC6√3
Ответ: гипотенуза равна12, а катет 6√3
СН-высота, См-медиана
Угол МСН=30, следовательно угол СМН=90-30=60
УголАМС=180-60=120
Медиана прямоугольного треугольника равна половине гипотенузы, следовательно треугАМС-равнобедренный, следовательно уголА=углуАСМ=30
А значит уголАВС=60
sin30=CB/AB=1/2
1/2=6/AB
AB=12
sin60=AC/AB
sin60=√3/2
√3/2=AC/12
AC6√3
Ответ: гипотенуза равна12, а катет 6√3
Похожие вопросы
Предмет: Литература,
автор: alan6037
Предмет: Қазақ тiлi,
автор: bibinurbolat4
Предмет: Физкультура и спорт,
автор: haski8
Предмет: География,
автор: Ksenyamag
Предмет: Информатика,
автор: aliska1234576