Предмет: Геометрия, автор: Olya1702

1.Площадь осевого сечения цилиндра равна 40 см2. Площадь его основания равна 16П см2. Найдите объём цилиндра и площадь боковой поверхности цилиндра.
2.Образующая конуса равна 16 см. Угол при вершине его
осевого сечения равен 120 градусов. Вычислить объем конуса и площадь его полной поверхности.

И сделайте, пожалуйста, рисунки к задачам.

Ответы

Автор ответа: yaLesya
0
Площадь основания равна 16п следовательно 16п=п* r в квадрате, отсюда радиус равен 4, а диаметр основания = 8. Осевое сечение прямоугольник, его длина равна 8, ширина (это же и образующая цилиндра) равна 40 разделить на 8 = 5 см. Объём равен площадь основания * на образующую получим 80п, площадь боковой поверхности 2*п*r*l  2*п*4*5 = 40п
Похожие вопросы