Найдите точку максимума функции:
Пожалуйста, с подробнейшим решением.
Ответы
Находим производную
y'=-2/3*3/2sqrt(x)+3=-sqrt(x)+3
находим критическую точку приравняв к нулю произодную
y'=0
x=9
проверяем что точка является точкой максимума, для чего находим вторую производную
y''=-1/2sqrt(x)<0
она меньше нуля поэтому в точке имеется максимум.
y(9)-max=-2/3*27+27+1=10
Для исследования функции сначала нужно взять производную. Чтобы проще было взять воспользуемся формулой сложения степеней:
Получим что:
Теперь перепишем функцию:
И берем производную:
Дальше найдем точку где производная обращается в 0.
Для этого решаем уравнение:
Это будет точка экстремума. Но точка экстремума может быть как минимумом так и максимумом. Надо показать что это максимум. Как это делается. Есть 2 метода.
1 метод:
Рассмотрим как ведет себя производная при x<9 и при x>9. Очевидно, что при x>9 производная . Значит функция растет. При x>9, наоборот . Для любых положительных х, вторая производная будет меньше нуля, т.е y''<0. Это необходимое и достаточное условие, чтобы функция была выпуклой вверх. Т.к. функция выпулкая вверх, то точка экстремума будет точкой максимума. ч.т.д
Ответ: точка максимума x=9, значение функции в этой точке y(9)=10