Предмет: Геометрия, автор: den4ik21

5xy-3x+y-2=0 Привести к каноническому виду и построить следующие линии второго порядка. Помогите пожалуйста, очень прошу. Пожалуйста.

Ответы

Автор ответа: cos20093
0

1. делаем поворот осей на 45 градусов по часовой стрелке (можно и против часовой). Это равносильно замене переменных

х = (u - v)/корень(2); 

y = (u + v)/корень(2);

Получаем

(u^2 - v^2)/2 - 3*(u - v)/корень(2) + (u + v)/корень(2) - 2 = 0;

Умножим на 2 и собирем члены с u отдельно, с v отдельно.

(u^2 - 2*u*корень(2)) - (v^2 - 4*v*корень(2)) = 4; 

Дополним выражения в скобках до полных квадратов, и лишнее вычтем :))

(u - корень(2))^2 - 2 - (v - 2*корень(2))^2 +8 = 4;

((v - 2*корень(2))^2 - (u - корень(2))^2 = (корень(2))^2;

2.Пусть 

z = v - 2*корень(2); t = u - корень(2);

(Это просто сдвиг начала координат в точку x = -1; y = 3; в первоначальной системе координат - важно!)

z^2 - t^2 = (корень(2))^2;  это и есть канонический вид гиперболы, ну или можно на (корень(2))^2 = 2 поделить - в зависимости от того, как от вас требуют. 

Нарисовать простую гиперболу в полученых осях вы сможете :)))

3.В итоге вот что получилось. Новые оси такие - начало координат в точке (-1;3), ось X' (ну, которая z) проходит под углом 45 градусов из второго квадранта в четвертый, ось Y' расположена как обычно относительно X'. В этих осях

x'^2/2 - y'^2/2 = 1;  

Ну, если не устраивает знак, поверните оси на 90 градусов еще :)))

Похожие вопросы
Предмет: Химия, автор: mrkiborg96
Предмет: Математика, автор: цветок99