Предмет: Алгебра,
автор: tej
найти вторую производную функции у=5^tg x
Ответы
Автор ответа:
0
у' = 5^tgx * ln5 *1/cos²x производная от сложной функции...............................................................................................
Автор ответа:
0
y'=5^(tgx)ln5*(1/cos^2x)
y''=ln5[cos^2x(5^(tgx)ln5*(1/cos^2x)+5^(tgx)*sin2x)]/cos^4x=
=ln5[5^tgx*ln5+5^tgx*sin2x)/cos^4x=ln5*5^tgx(ln5+sin2x)/cos^4x
Похожие вопросы
Предмет: Русский язык,
автор: ziganshinasamira
Предмет: Информатика,
автор: Veronikaorlova2007
Предмет: ОБЖ,
автор: gubkabob01
Предмет: Физика,
автор: Ангел13
Предмет: Обществознание,
автор: knopka99