Предмет: Геометрия,
автор: 9DEnchic5
Стороны треугольника равны 25 см,39 см и 56 см. Точка М удалена от каждой стороны этого треугольника на 25 см. Вычислить расстояние от точки М до плоскости треугольника.
Ответы
Автор ответа:
0
Поскольку наклонные, являющиеся расстояниями от М до сторон тр-ка, одинаковые, то и проекции их на плоскость треугольника одинаковые и равны радиусу вписанной в треугольник окружности.
r = √((р - а)(р - в)(р - с)/р
Пусть а = 25, в = 39, с = 56, тогда полупериметр
р = 0,5·(25 + 39 + 56) = 0,5·120 = 60
r = √((60 - 25)(60 - 39)(60 - 56)/60) = √(35·21·4/60 = √49 = 7
Растояние Н от точки М до плоскости тр-ка, радиус r вписанной окружности и любая из наклонных L = 25 образуют прямоугольный тр-к с гипотенузой L.
По теореме Пифагора найдём Н
Н² = L² - r² = 25² - 7² = 625 - 49 = 576
Н = 24(см)
Похожие вопросы
Предмет: Химия,
автор: Аноним
Предмет: Информатика,
автор: Madny
Предмет: ОБЖ,
автор: karishka01199210
Предмет: Математика,
автор: snejan