. Найдите радиус окружности, описанной около равнобедренного треугольника, боковая сторона которого равна 10 см, а один из
углов, равен 140°.
Ответы
В этой задаче только одна тонкость - 140 градусов - это угол при вершине. Поэтому угол при основании равен Ф = (180 - 140)/2 = 20 градусов (или пи/9).
Осталось вспомнить теорему синусов 2*R*sin(Ф) = a; а = 10;
R = 5/sin(пи/9); само собой, это можно вычислить только приближенно (если только учитель не садист :) но в любом случае, это за пределами всех школьных программ)
R = 5/0,342020143325669 = 14,6190220008154; (слава Гейтсу, есть Excel)
Вот, чего только не узнаешь, ковыряясь в тривиальных задачах. Оказывается, тригонометрические функции угла 20 градусов теоретически невозможно выразить в радикалах. Оказывается, это противоречит некоей теореме Гаусса, согласно которой с помощью циркуля и линейки можно построить не любой правильный n-угольник, а только для некоторых n, и 18-угольники в это разрешенное множество не входят. В частности, можно выразить в радикалах функции всех углов, кратных 3 градусам.
Однако это не означает, что cos(пи/9) (или синус, не важно) нельзя "вычислить на кончике пера". Легко видеть, что
cos(60) = 4*(cos(20))^3 - 3*cos(20); если x = cos(20); то
x^3 - (3/4)*x - 1/8 = 0;
У этого уравнение есть по крайней мере один действительный корень (равный косинусу 20 градусов, конечно). Есть формулы Кардано для решения в радикалах таких уравнений. Но - вот беда - результат, хоть и действительный, и будет выражен в радикалах, обязательно будет содержать внутри записи мнимую единицу i; i^2 = -1; и избавиться от неё в выражении никак не получится (в противном случае нарушилась бы та самая теорема Гаусса). :))))))))) это я так - развлекаюсь :)))
пусть дан треугольник ABC, AC основание
Тогда по т. косинусов найдем АС
АС^2=10^2+10^1-2*10*10*cos 140
AC^2=200-200*cos(180-40)
AC^2=200+200*cos 40
AC^2=200*(1+cos 40)=200*2*(cos 20)^2=400*(cos 20)^2
AC=20*cos 20
2R=AC/sin 140,(формула) sin 140=sin 40=2sin 20*cos 20
2R=20*cos 20/2sin 20*cos 20
2R=10/sin 20
R=5/sin 20