Предмет: Алгебра, автор: sxdcfgvh

на доске выписали подряд без запяТых, первые 100 членов арифметической прогрессии, в результате чего получился следующий набор цифр: 200020142028…, где до многоточия выписаны первые три члена данной прогрессии, какая цифра расположена в полученном наборе на 115-ом месте? ответ: 9 , решите плизз

Ответы

Автор ответа: NNNLLL54
0
Если посмлтреть на записанные цифры, то видно, что числа 2000, 20014, 2028 отличаются на одно и то же число 14. Значит, это разность арифметической прогрессии  d=14. Каждое число содержит 4 цифры. Тогда посмотрим, сколько раз по 4 цифры содержится в числе 115 .
115:4=28,75.
Значит при записи 28 членов прогрессии будет использовано 28*4=112 цифр,
 а 115-ая цифра будет на находится 3 месте 29-го члена прогрессии.Найдём его:


a_{29}=a_1+d(29-1)=2000+14cdot 28=2392


Третье место (или 115-ое в общей записи) занято цифрой 9. 
Похожие вопросы