Предмет: Алгебра,
автор: Went1
Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 12. Найдите объем пирамиды
Ответы
Автор ответа:
0
По условию AB=BD=BC=12 условных единиц длины
∠ABD=∠DBC=∠CBA=90°
Рассмотрим ΔABD. Он равнобедренный т.к. AB=BD.
Найдем сторону основания AD по теореме Пифагора
AD²=AB²+BD² ⇒ AD=√(12²+12²=√2*144=12√2 условных единиц длины.
ΔADC - равносторонний, так как ΔABD=ΔDBC=ΔABC
Площадь равностороннего треугольника
условных единиц площади
Проведем из точки B на сторону AD высоту в точку M (она же медиана и биссектриса).
∠ABM=∠BAM=∠ADB=∠DBM=45°
MB=AM=0,5AD=6√2 условных единиц длины
В основании в равностороннем треугольники проведем из его вершин высоты (они же медианы, биссектрисы).
Рассмотрим Δ MOD (∠MDO=30° , так как все углы в равностороннем треугольнике равны 60°, а биссектриса проведенная из вершины делит угол пополам): ⇒ MO=MD*Tg30°= условных единиц длины
BO²=MB²-MO² ⇒ BO=√(72-24)=4√3 условных единиц длины
Объем пирамиды равен
условных единиц объема
∠ABD=∠DBC=∠CBA=90°
Рассмотрим ΔABD. Он равнобедренный т.к. AB=BD.
Найдем сторону основания AD по теореме Пифагора
AD²=AB²+BD² ⇒ AD=√(12²+12²=√2*144=12√2 условных единиц длины.
ΔADC - равносторонний, так как ΔABD=ΔDBC=ΔABC
Площадь равностороннего треугольника
условных единиц площади
Проведем из точки B на сторону AD высоту в точку M (она же медиана и биссектриса).
∠ABM=∠BAM=∠ADB=∠DBM=45°
MB=AM=0,5AD=6√2 условных единиц длины
В основании в равностороннем треугольники проведем из его вершин высоты (они же медианы, биссектрисы).
Рассмотрим Δ MOD (∠MDO=30° , так как все углы в равностороннем треугольнике равны 60°, а биссектриса проведенная из вершины делит угол пополам): ⇒ MO=MD*Tg30°= условных единиц длины
BO²=MB²-MO² ⇒ BO=√(72-24)=4√3 условных единиц длины
Объем пирамиды равен
условных единиц объема
Приложения:
Похожие вопросы
Предмет: Другие предметы,
автор: vladcalyj50
Предмет: Химия,
автор: maruaatee
Предмет: Русский язык,
автор: boghejterovifleksa
Предмет: Математика,
автор: CollGirl
Предмет: Геометрия,
автор: aosennova