Предмет: Геометрия,
автор: erbolidze
Основание равнобедренного треугольника равно 18 см,а боковая сторона равна 15 см.Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей?
Ответы
Автор ответа:
0
Радиус описанной окружности: R= авс/4S.
Радиус вписанной окружности: r=2S/(а+в+с), где а,в,с, - стороны треугольника, S - площадь треугольника. Пусть а=в=15см - боковые стороны, с=18см - основание.
Для нахождения площади треугольника найдем высоту, проведенную к основанию, по т. Пифагора:
h²=а²-(с/2)²=15²-9²=225-81=144, h=√144=12(см)
S =½·с·h=½·18·12=108 (см²)
R=15·15·18/4·108=9, 375(см)
r=2·108/(15+15+18)=208/42=4,5см
Похожие вопросы
Предмет: Английский язык,
автор: Аноним
Предмет: Английский язык,
автор: korolevsans
Предмет: Биология,
автор: stervadarkness
Предмет: Геометрия,
автор: KAPELKA