Предмет: Геометрия,
автор: heser
Распишите доказательство о сумме углов треугольника
Ответы
Автор ответа:
0
Рассмотрим произвольный треугольник ABC и докажем, что ∠ A + ∠ B + ∠ C = 180°. (чертишь треуг с острыми углами вверху В, слева А и справа С.Проведем через вершину В прямую а, параллельную стороне АС
Углы 1(А) и 4 внешний угол возле угла В слева( являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3(С) и 5внешний угол возле угла В справа — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому
∠ 4 = ∠ 1, ∠ 5 = ∠ 3. (1) Очевидно, сумма углов 4, 2 и 5 равна развернутому углу с вершиной В, т. е.
∠ 4 + ∠ 2 (В) + ∠ 5 = 180°. Отсюда, учитывая равенства (1), получаем:
∠ l + ∠ 2 + ∠ 3 = 180°, или ∠ A + ∠ B + ∠ C = 180°. Теорема доказана.
Углы 1(А) и 4 внешний угол возле угла В слева( являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3(С) и 5внешний угол возле угла В справа — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому
∠ 4 = ∠ 1, ∠ 5 = ∠ 3. (1) Очевидно, сумма углов 4, 2 и 5 равна развернутому углу с вершиной В, т. е.
∠ 4 + ∠ 2 (В) + ∠ 5 = 180°. Отсюда, учитывая равенства (1), получаем:
∠ l + ∠ 2 + ∠ 3 = 180°, или ∠ A + ∠ B + ∠ C = 180°. Теорема доказана.
Похожие вопросы
Предмет: История,
автор: nzivotovska
Предмет: Русский язык,
автор: dinara911
Предмет: Другие предметы,
автор: Zhuldyzay09
Предмет: География,
автор: potopahina
Предмет: Физика,
автор: martovskay1996