Предмет: Геометрия,
автор: DariaAlex
докажите что в треугольнике
1)против большей стороны лежит больший угол
2)обратно против большего угла лежит большая сторона
Ответы
Автор ответа:
0
Доказательство:
1) Отложим на стороне AB отрезок AD равный стороне AC. Так как AD<AB, то точка D лежит между точками A и B. Следовательно, угол 1 являетсячастью угла С, значит, угол С > угла 1. Угол 2 - внешний угол треугольника BDC, поэтому угол 2>угла B. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, угол C>угла 1, угол 1=углу 2, угол 2>угла B. Отсюда следует что угол С > угла B.
2) Пусть в треугольнике АВС угол С>угла В. Докаже что АВ>АС.
Предположим что это не так. тогда либо АВ=АС, либо АВ<АС. В первом случае треугольник АВС равнобедренный и, значит угол С = углу В. Во втором случае угол В> угла С(против большей стороны лежит и больший угол из доказательства 1). И то и другое противоречит условию: угол С > угла В. Поэтому наше предположение неверно, и, следовательно АВ>ВС. Теорема доказана
1) Отложим на стороне AB отрезок AD равный стороне AC. Так как AD<AB, то точка D лежит между точками A и B. Следовательно, угол 1 являетсячастью угла С, значит, угол С > угла 1. Угол 2 - внешний угол треугольника BDC, поэтому угол 2>угла B. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, угол C>угла 1, угол 1=углу 2, угол 2>угла B. Отсюда следует что угол С > угла B.
2) Пусть в треугольнике АВС угол С>угла В. Докаже что АВ>АС.
Предположим что это не так. тогда либо АВ=АС, либо АВ<АС. В первом случае треугольник АВС равнобедренный и, значит угол С = углу В. Во втором случае угол В> угла С(против большей стороны лежит и больший угол из доказательства 1). И то и другое противоречит условию: угол С > угла В. Поэтому наше предположение неверно, и, следовательно АВ>ВС. Теорема доказана
Похожие вопросы
Предмет: Английский язык,
автор: gameroolgame
Предмет: Информатика,
автор: Dog434comzub
Предмет: История,
автор: usirovatohuar
Предмет: Математика,
автор: alina25030