корень 3 tg(3x-п4)+1 меньше либо равно 0-решить неравенство решить уравнение: 2sinв квадрате x + 5cosx+1=0 решить уравнение: 2sin4x=-1 Прошу это очень срочно.Помогите решить
Ответы
1.
√3 tg(3x-π/4)+1≤0;
tg(3x-π/4)≤-1/√3;
-π/2+πn≤3x-π/4≤arctg(-1/√3)+πn, n∈Z;
-π/2+πn ≤ 3x-π/4 ≤- π/6+πn, n∈Z;
-π/2+π/4+πn ≤ 3x ≤ - π/6+π/4+πn, n∈Z;
-π/6+π/12+(π/3)·n ≤ x ≤ - π/18+π/12+(π/3)·n, n∈Z;
-π/12+(π/3)·n ≤ x ≤ π/36+(π/3)·n, n∈Z;
2.
2sin² x + 5cosx+1=0; воспользуемся формулой sin² x=1-cos²х;
2·(1-cos²х)+ 5cosx+1=0;
2-2cos²х+ 5cosx+1=0;
2cos²х- 5cosx-3=0;
Замена у=cosx;
2у²-5у-3=0;
Д=25-4·2·(-3)=49, √Д=7;
у₁=(5-7)/4=-3/4;
у₂=(5+7)/4=12/4=3;
Возвращаемся к замене:
cosx=3 - нет решений, поскольку |cosx|≤1
cosx=-3/4,
х=±arccos(-3/4) +2πn, n∈Z; т.к cosх - четная функция. то
х=±arccos(3/4) +2πn, n∈Z;
3.
2sin4x=-1
sin4x=-½;
4x=(-1)в степени n·arcsin(-½ ) +πn, n ∈ Z;
x=(-1)в степени n·¼arcsin(-½ ) +¼πn, n ∈ Z;
1.
√3 tg(3x-π/4)+1≤0;
tg(3x-π/4)≤-1/√3;
-π/2+πn≤3x-π/4≤arctg(-1/√3)+πn, n∈Z;
-π/2+πn ≤ 3x-π/4 ≤- π/6+πn, n∈Z;
-π/2+π/4+πn ≤ 3x ≤ - π/6+π/4+πn, n∈Z;
-π/6+π/12+(π/3)·n ≤ x ≤ - π/18+π/12+(π/3)·n, n∈Z;
-π/12+(π/3)·n ≤ x ≤ π/36+(π/3)·n, n∈Z;
2.
2sin² x + 5cosx+1=0; воспользуемся формулой sin² x=1-cos²х;
2·(1-cos²х)+ 5cosx+1=0;
2-2cos²х+ 5cosx+1=0;
2cos²х- 5cosx-3=0;
Замена у=cosx;
2у²-5у-3=0;
Д=25-4·2·(-3)=49, √Д=7;
у₁=(5-7)/4=-3/4;
у₂=(5+7)/4=12/4=3;
Возвращаемся к замене:
cosx=3 - нет решений, поскольку |cosx|≤1
cosx=-3/4,
х=±arccos(-3/4) +2πn, n∈Z; т.к cosх - четная функция. то
х=±arccos(3/4) +2πn, n∈Z;
3.
2sin4x=-1
sin4x=-½;
4x=(-1)в степени n·arcsin(-½ ) +πn, n ∈ Z;
x=(-1)в степени n·¼arcsin(-½ ) +¼πn, n ∈ Z;