Предмет: Геометрия,
автор: marusya98
Диагональ ромба делит его высоту проведённую на отрезки в длинну 10 см и 6 см.Найдите периметр ромба.(я знаю что диагональ ромба-это бисектриса угла)
Ответы
Автор ответа:
0
Ромб - параллелограмм, все стороны которого равны.
Р=4a
Обозначим высоту ВН, точку ее пересечения с диагональю - М.
Треугольник АВН - прямоугольный.
Пусть АН =х
ВН=10+6=16
Тогда АВ² =ВН² +АН² =256+х²
АВ =√(256+х²)
Рассмотрим ⊿ АМН и ⊿ ВМС - оба прямоугольные, их острые углы равны, ⇒ они подобны
АН:ВС=НМ:ВМ
ВС=АВ⇒
ВС =√(256+х²)
Из подобия треугольников:
х:√(256+х² )=6:10
6х=10√(256+х² )
Возведя обе части в квадрат, получим:
36х² =100(256+х² )
36х² =25600+100х²
64х² =25600
х² =400
х=20
Р=4*20=80 см
Похожие вопросы
Предмет: Алгебра,
автор: danilmirniy111
Предмет: Английский язык,
автор: boorleny
Предмет: Русский язык,
автор: ordashevaadel
Предмет: История,
автор: Lero4ka15