Предмет: Алгебра,
автор: IOriOnI
Окружность,построенная на стороне AC треугольник ABC как на диаметре,проходит через середину стороны BC и пересекает в точке D продолжение стороны AB за точку А, причем AD=(2/3)AB. найти площадь треугольника ABC, если АС=1
Ответы
Автор ответа:
0
Окружность, построенная на стороне `AC` треугольника `ABC` как на диаметре, проходит через середину стороны `BC` и пересекает в точке `D` продолжение стороны `AB` за точку `A` причём `AD=2/3*AB`. Найдите площадь треугольника `ABC`, если `AC= 1`. Угол `AEC` - прямой, так как он опирается на диаметр. Кроме того, по условию `BE=EC`. Отсюда `AB=AC=1`. Поскольку `AD=2/3*AB`, то `AD=2/3`. По теореме Пифагора находим `DC`. Площадь треугольника `ABC` равна `1/2*AB*CD=sqrt(5)/6` Ответ: `sqrt(5)/6`
Приложения:
Похожие вопросы
Предмет: Геометрия,
автор: veronikacasovnikova6
Предмет: Другие предметы,
автор: angel2283
Предмет: Английский язык,
автор: nd18307
Предмет: Математика,
автор: pushkina
Предмет: Физика,
автор: ЖаНнА95