Предмет: Геометрия,
автор: эмми
в прямоугольный треугольник вписана окуржность.точка касания делит гипотенузу в отношении 5:12.найти площадь треугольника, если центр окружности удален от вершины прямого угла на расстоянии квадратный корень из 18
Ответы
Автор ответа:
0
x/y=5/12 => y=12x/5
Находим R=√18/√2=3см, на основании sin 45=1/√2.
Находим меньшие отрезки катетов относительно точек касания окружности, так как образованные треуголники радиусами и бисектрисой прямого угла - равнобедренные, то эти отрезки = 3 см.
Составляем уравнение по Пифагору, (x+3)^2+(3+y)^2=(x+y)^2; в это уравнение подставляем y=12x/5.
Получаем после упрощений уравнение: 6x+6y-2xy+18 => 4x^2-17x-15=0, решаем и находим x=5 см; y=12 см
Находим S=(5+3)*(12+3)=8*15=120 см^2
Похожие вопросы
Предмет: Математика,
автор: rogrg
Предмет: Геометрия,
автор: dina1234t3
Предмет: Алгебра,
автор: gorohinastia
Предмет: Геометрия,
автор: amazongirl
Предмет: Литература,
автор: Аноним