Предмет: Геометрия,
автор: Маргоша1992
Помогите,теорема о свойстве двух касательных к окружности проведенному из одной точки
Ответы
Автор ответа:
0
Теорема. Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.Пусть АВ и АС — касательные к окружности О (черт. 328).Требуется доказать, что АВ =АС и ОА является биссектрисой угла А, т. е. / 1 = / 2.Треугольники ОВА и ОСА прямоугольные, так как касательные АВ и АС перпендикулярны к радиусам ОВ и ОС в точках В и С. Сторона ОА общая. Катеты ОВ и ОС равны, как радиусы одного и того же круга. Прямоугольные треугольники ОВА и ОСА равны по гипотенузе и катету. Отсюда АВ = АС и / 1 = / 2, т. е. ОА есть биссектриса угла А.На этом свойстве касательных основано устройство прибора, называемого центроискателем, который нередко применяется в столярных и слесарных мастерских для отыскания центра круга на различных деталях. Центроискатель (черт. 329) представляет собой угол, составленный из двух деревянных или металлических пластинок, в котором приделана биссектриса этого угла.Центроискатель прикладывают к кругу так, чтобы пластинки стали касательными, и проводят прямую по биссектрисе угла. Затем центроискатель поворачивают и снова проводят прямую по биссектрисе угла. Точка пересечения этих двух прямых и определит центр круга.
Похожие вопросы
Предмет: Математика,
автор: babaevasalima1961
Предмет: Математика,
автор: huahs19y6
Предмет: Физика,
автор: fangeliisss
Предмет: Алгебра,
автор: DieLast