Предмет: Геометрия, автор: Ruslan57

. Докажите, что биссектрисы внешних углов
прямоугольника, пересекаясь, образуют квадрат

Ответы

Автор ответа: Andr1806
0

Ответ:

Доказательство в объяснении.

Объяснение:

Определение: внешний угол треугольника (многоугольника) - угол, образованный одной из его сторон и продолжением смежной стороны.

Таким образом, при каждой вершине прямоугольника образуется по два внешних угла. В прямоугольнике внутренние углы прямые, значит и внешние углы, смежные с внутренними,  также прямые. Биссектриса прямого угла делит его на два угла по 45°. Следовательно, пересекаясь, биссектрисы образуют прямоугольные равнобедренные треугольники при общей гипотенузе - стороне прямоугольника - треугольники DFA, AFB, BGC и CHD.

Отрезки АВ = CD, BC = AD как противоположные стороны прямоугольника, следовательно отрезки (катеты равнобедренных треугольников) равны: EA=ED=GB=GC, FA=FB=HC=HD  => EF=FG=GH=HE (как суммы равных отрезков). Значит EFGH - параллелограмм (по признаку), а так как все стороны равны, то ромб. Кроме того, ∠E = ∠F = ∠G = ∠H  = 90°  =>

EFGH - квадрат, что и требовалось доказать.

Приложения:
Похожие вопросы
Предмет: Русский язык, автор: Vaheslav12012006
Предмет: Математика, автор: mahabatsarsenbaeva61