Предмет: Геометрия,
автор: Алика12
в конус, осевое сечение которого есть правильный треугольник, вписан шар. Найдите отношение площади сферы к площади боковой поверхности конуса
Ответы
Автор ответа:
0
В осевом сечении это выглядит как будто в равносторонний треугольник вписан круг. Пусть радиус основания конуса равен r, тогда сторона равностороннего треугольника равна a=2r. Тогда радиус вписанной окружности (в осевом сечении) равен R=a * корень(3) / 6 = r / корень(3). Это и есть радиус вписанного шара.
Образующая конуса равна l=a=2r.
Площадь боковой поверхности конуса равна пи r l = 2 пи r^2
Площадь сферы равна 4 пи R^2 = 4 пи r^2 / 3
Отношение площадей равно (4/3)/2 = 2/3
Похожие вопросы
Предмет: Другие предметы,
автор: Аноним
Предмет: Английский язык,
автор: lizadmitruk44
Предмет: Другие предметы,
автор: annagajsinova
Предмет: Химия,
автор: remember
Предмет: Биология,
автор: Vikusjagood