Предмет: Геометрия,
автор: Dashule4ka
Помогите в геометрии!!! Биссектриса прямого угла делит гипотенузу прямоугольного треугольника на отрезки, разность которых равна 5. Найти площадь треугольника, если его катеты относятся как 3:4.
Ответы
Автор ответа:
0
ну, по свойству биссектрисы отрезки гипотенузы тоже относятся как 3/4. Пусть один из них 3*x, тогда 4*x, разность x = 5. Поэтому гипотенуза равна 7*5 = 35.
Катеты легко находятся из теоремы Пифагора при заданной пропорции, они равны 21 и 28. А площадь равна 294.
Задачу можно решить без каких-то "сложных" вычислений, если сразу увидеть, что отношение катетов 3/4 задает нам египетский треугольник, подобный (3,4,5). Сопоставляя эту тройку с длиной гипотенузы 35, видим, что длины сторон (21, 28, 35).
Похожие вопросы
Предмет: Қазақ тiлi,
автор: Аноним
Предмет: Физика,
автор: nurka1233
Предмет: Математика,
автор: bugubaevahmet4
Предмет: Алгебра,
автор: кроха3
Предмет: Геометрия,
автор: darisha96