Предмет: Геометрия,
автор: Love1103
Дан треугольник ABC, точка M принадлежит отрезку AB, точка K принадлежит отрезку BC, MK//AC, BM:MA=2:5. площадь ABC=98. Найдите площадь четырехугольника AMKC
Ответы
Автор ответа:
0
1) ∆MBK ~ ∆АВС (по 2 углам: уголВ- общий, Угол ВМК= углу А как соотв. при параллельных прямых МК и АС)
2) Пусть на одну часть приходится х, тогда МВ=2х, а АВ=5х+2х=7х.
Отношение площадей треугольников равно квадрату коэффициента подобия, т.е.

Smbk=8 ед²
3) Samkc=Sabc-Smbk=98-8=90 (ед²)
Ответ: 90 ед²
2) Пусть на одну часть приходится х, тогда МВ=2х, а АВ=5х+2х=7х.
Отношение площадей треугольников равно квадрату коэффициента подобия, т.е.
Smbk=8 ед²
3) Samkc=Sabc-Smbk=98-8=90 (ед²)
Ответ: 90 ед²
Похожие вопросы
Предмет: Английский язык,
автор: arnold745747
Предмет: Английский язык,
автор: OnePanntera
Предмет: Математика,
автор: miras3333
Предмет: Математика,
автор: valentinovna97