Предмет: Геометрия,
автор: Зайчита
Дан треугольник АВС, у которого АВ=6 см, АС=10 см. На его сторонах взяты точки: М принадлежит АВ, N принадлежит ВС, К принадлежит АС. Известно, что АМNК - ромб. Найдите периметр ромба.
Ответы
Автор ответа:
0
Чертеж во вложении.
1) АМNК - ромб, поэтому все его стороны равны.
2) ∆МВN ~ ∆АВС (по 2 углам- ∠В-общий, ∠BMN=∠A) =>
3) Пусть AM=MN=NK=AK= a (см). Тогда MB=AB-a=6-a (см).
6a=10(6-a)
60-10а=6а
16а=60
а=3,75, т.е. сторона ромба 3,75 см.
3) Pромба=4а=4*3,75=15 см
Ответ: 15 см.
1) АМNК - ромб, поэтому все его стороны равны.
2) ∆МВN ~ ∆АВС (по 2 углам- ∠В-общий, ∠BMN=∠A) =>
3) Пусть AM=MN=NK=AK= a (см). Тогда MB=AB-a=6-a (см).
6a=10(6-a)
60-10а=6а
16а=60
а=3,75, т.е. сторона ромба 3,75 см.
3) Pромба=4а=4*3,75=15 см
Ответ: 15 см.
Приложения:
Похожие вопросы
Предмет: Химия,
автор: vovarumiantzev2006
Предмет: Физика,
автор: Abdyla777
Предмет: Қазақ тiлi,
автор: Аноним
Предмет: Литература,
автор: Иришандра