Предмет: Геометрия,
автор: Yanik070
Один из катетов прямоугольного треугольника равен 15, а проекция другого катета на гипотенузу равна 16. Найдите радиус окружности, вписанной в этот треугольник.
Ответы
Автор ответа:
0
Пусть проекция первого катета на гипотенузу равна х, тогда гипотенуза равна х+16.
Квадрат катета равен произведению гипотенузы на его проекцию на гипотенузы.
х(х+16)=15^2
x^2+16x-225=0
D=256+900=1156
x1=(-16-34)/2<0 - не подходит, длина отрезка не может быть отрицательным числом
х2=(-16+34)/2=9
Гипотенуза равна 9+16=25
Второй катет равен корень(25*16)=5*4=20
Радиус окружности, вписанной в прямоугольной треугольник равен
к=(a+b-c)/2.
a=15,b=20, c=25
r=(15+20-25)/2=5
ответ: 5
Квадрат катета равен произведению гипотенузы на его проекцию на гипотенузы.
х(х+16)=15^2
x^2+16x-225=0
D=256+900=1156
x1=(-16-34)/2<0 - не подходит, длина отрезка не может быть отрицательным числом
х2=(-16+34)/2=9
Гипотенуза равна 9+16=25
Второй катет равен корень(25*16)=5*4=20
Радиус окружности, вписанной в прямоугольной треугольник равен
к=(a+b-c)/2.
a=15,b=20, c=25
r=(15+20-25)/2=5
ответ: 5
Похожие вопросы
Предмет: Физика,
автор: Cherika17
Предмет: Английский язык,
автор: Аноним
Предмет: Музыка,
автор: adushkina3
Предмет: Алгебра,
автор: filatkaHD