Предмет: Геометрия, автор: dasna1

из данной точки проведены к данной плоскости две равных наклонные угол между наклонной равно 60, а угол между их проекциями прямой докажите что каждая из этих наклонных образует с  плоскостью угол 45

Ответы

Автор ответа: SlowSnow
0
Поскольку наклонные равны, значит и их проекции будут равны между собой. Далее, если рассмотреть треугольник, который составляют наклонные, то он правильный, поэтому если проекция наклонной равняется Х, то сторона этого треугольника будет равняться Х*  sqrt{2} . После, если рассмотреть треугольник, который составляет наклонная и ее проекция, то мы видим, что он прямой. В нем мы знаем величину катета и гипотенузы, поэтому сейчас необходимо доказать, что этот треугольник - равнобедренный. Поскольку гипотенуза что в данном треугольнике, что в предыдущем рассмотренном равна, а так же равен один из катетов, мы делаем вывод, что второй катет так же равен (из равенства прямоугольных треугольников). Поэтому, в равнобедренном треугольнике, где угол при вершине - прямой, остальные углы равняются по 45 градусов.
Похожие вопросы
Предмет: Биология, автор: Аноним