Предмет: Геометрия,
автор: kotdog123456789
В прямоугольном треугольнике точка касания вписанной в него окружности и гипотенузы делит гипотенузу на отрезки, длины которых равны 3 и 7, найдите площадь треугольника
Ответы
Автор ответа:
0
Пусть вписанная окружность делит катеты на отрезки длиной х. Тогда можем записать по теореме Пифагора и по свойству касательных, проведённых из одной точки:
(х+3)^2+(x+7)^2=100;
x^2+6x+9+x^2+14x+49=100;
2x^2+20x-42=0;
x^2+10x-21=0;
D/4=25+21=46;
x=кор(46)-5.
Значит, катеты треугольника равны кор(46)-2 и кор(46)+2 см соответственно. Перемножим катеты: 46-4=42 см2. Но это удвоенная площадь треугольника. Значит, площадь треугольника 21 см2.
Ответ: 21 см2
Похожие вопросы
Предмет: История,
автор: nailalbekov
Предмет: Математика,
автор: Аноним
Предмет: История,
автор: Аноним
Предмет: Математика,
автор: irishka100
Предмет: Математика,
автор: Serebroize