Предмет: Геометрия,
автор: kikbai1997
площадь основания сегмента равна 64п, а площадь его сферической поверхности - 100 п . Найдите его объём.
Ответы
Автор ответа:
0
Площадь основания шарового сегмента S=πr².
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
Ответ: V = 228π.
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
Ответ: V = 228π.
Приложения:
Похожие вопросы
Предмет: Математика,
автор: beksultanardak2020
Предмет: Биология,
автор: Аноним
Предмет: Английский язык,
автор: Аноним
Предмет: Физика,
автор: риккки
Предмет: Алгебра,
автор: Andrey19a