Предмет: Геометрия, автор: AnnVoo

В треугольнике abc проведены медианы AK и BM пересекающиеся в точке О. Докажите, что площади треугольников MOK и AOB относятся как 1:4.

Ответы

Автор ответа: ElenaUL
0

треугольники ABO и KMO подобны. Медианы треугольника в точке пересечения делятся в отношении 2:1 считая от вершины. OM:BO=1:2, OK:AO=1:2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия k=1/2. От сюда следует, что отношение площадей треугольников MOK и AOB равно 1/2 в квадрате. Или же 1:4. Ч.т.д.

Похожие вопросы
Предмет: Математика, автор: Глупоесущество