Предмет: Алгебра,
автор: MaRiSHaOrI
С1. Решите уравнение 2cos(^2)x + (2-кореньиз2)sinx + кореньиз2 - 2 = 0
Укажите корни, принадлежащие отрезку [-3П;-2П]
Ответы
Автор ответа:
0
2cos^2x + (2-√2)sinx+√2-2=0
cos^2x = 1 - sin^2x
2(1 - sin^2x) + (2-√2)sinx+√2-2=0
2-2sin^2x + (2-√2)sinx+√2-2=0
-2sin^2x+(2-√2)sinx+√2=0
2sin^2x-(2-√2)sinx-√2=0
D=(2-√2)^2 + 4*2*√2 = 4 - 4√2 + 2 + 8√2 = 6+4√2 = (√2+2)^2
sinx1=(2-√2 - √2+2) /4 = (4-2 √2)/4 = (2- √2)/2 = √2/2 ->x=(-1)^(n+1) *pi/4+pi*n
sinx2 = (2-√2 +√2+2) /4 = 1 ->x=pi/2+2pi*k
как-то так, проверььте
Похожие вопросы
Предмет: Математика,
автор: Roma6364
Предмет: Алгебра,
автор: Anoam
Предмет: Английский язык,
автор: olesya5417
Предмет: Химия,
автор: 1234567890й