Предмет: Геометрия,
автор: Alexandra47
Внутри равностороннего треугольника с высотой 6 см взята точка. Найти сумму расстояний от этой точки до сторон треугольника.
Ответы
Автор ответа:
0
Пусть внутри равностороннего треугольника ABC взяли точку O. Площадь треугольника ABC равна сумме площадей треугольников AOB, BOC, AOC. Площадь треугольника AOB можно записать как 1/2*a*h1, где a - сторона AB исходного равностороннего треугольника, h1 - высота треугольника AOB, проведённая из вершины O. Она и будет расстоянием от O до стороны AB. Аналогично, площади треугольников BOC и AOC можно записать соответственно как 1/2*a*h2, 1/2*a*h3, где h2, h3 - расстояния от O до двух других сторон треугольника. Сложив эти три площади, получим, что 1/2*a*(h1+h2+h3)=1/2*a*h, где h - высота исходного равностороннего треугольника. Значит, h1+h2+h3=h, то есть сумма расстояний от любой точки внутри треугольника до его сторон постоянна и равна высоте этого треугольника, в нашем случае 6 см.
Похожие вопросы
Предмет: Математика,
автор: hakovartem
Предмет: Математика,
автор: bestowl
Предмет: Биология,
автор: egordidicenko
Предмет: Информатика,
автор: Vovchik23
Предмет: Алгебра,
автор: meqqo