Предмет: Геометрия,
автор: Albert888
задание по геометрии!
1) Дан треугольник ABC. Прямая СD параллельна биссектрисе внешнего угла треугольника при вершине В и пересекает прямую АВ в точке D. Из точки D к прямой ВС проведен перпендикуляр DK. Сравните отрезки DK и ВС.
2) BD- биссектриса треугольника АВС, А-D-C. Через точку С проведена прямая CF, CF || BD. Прямая CF пересекает прямую АВ точке F. BP- высота треугольника АВС. Сравните ВР и BF.
Ответы
Автор ответа:
0
Пусть биссектриса внешнего угла треугольника при вершине В делит его на равные углы,градусная мера которых - α, тогда углы BCD и α равны (как соответственные углы при параллельных прямых). Но ∠BDC также равен α (как накрест лежащие),
то есть треугольник DBC - равнобедренный: BC=DB.
В прямоугольном треугольнике DBK DB - гипотенуза, DK - катет, т.е. DB>DK и,
так как DB=BC, BC>DK.
Ответ:BC>DK.
Во второй задаче аналогично доказывается равенство сторон BC и BF и из прямоугольного треугольника BPC получается BC=BF>BP.
то есть треугольник DBC - равнобедренный: BC=DB.
В прямоугольном треугольнике DBK DB - гипотенуза, DK - катет, т.е. DB>DK и,
так как DB=BC, BC>DK.
Ответ:BC>DK.
Во второй задаче аналогично доказывается равенство сторон BC и BF и из прямоугольного треугольника BPC получается BC=BF>BP.
Похожие вопросы
Предмет: Русский язык,
автор: Poliluka
Предмет: История,
автор: manarbekovazhanel23
Предмет: Русский язык,
автор: 0t0a0n0y0a
Предмет: Биология,
автор: Алинчик16
Предмет: Геометрия,
автор: Джесси115