Предмет: Геометрия,
автор: kambala1
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC = 32.
Ответы
Автор ответа:
0
1. <OAD=<BOA как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АО. Но <BAO=<OAD по условию, значит
<BOA=<BAO, и треугольник АВО - равнобедренный с равными углами при основании АО, значит
АВ=ВО
2. <COD=<ODA как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DО. Но <ODA=<CDO по условию, значит
<COD=<CDO, и треугольник OCD - равнобедренный с равными углами при основании OD, и
ОС=CD.
3. Поскольку CD=AB, мы получаем, что:
АВ=ВО=ОС=CD, и точка О - середина ВС. Значит
АВ=32/2 = 16
<BOA=<BAO, и треугольник АВО - равнобедренный с равными углами при основании АО, значит
АВ=ВО
2. <COD=<ODA как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DО. Но <ODA=<CDO по условию, значит
<COD=<CDO, и треугольник OCD - равнобедренный с равными углами при основании OD, и
ОС=CD.
3. Поскольку CD=AB, мы получаем, что:
АВ=ВО=ОС=CD, и точка О - середина ВС. Значит
АВ=32/2 = 16
Приложения:
Похожие вопросы
Предмет: Биология,
автор: kaikbasov
Предмет: Математика,
автор: milanavolcova
Предмет: Русский язык,
автор: Аноним
Предмет: Математика,
автор: Ильдар1