Предмет: Геометрия,
автор: Kliana85
В трапеции АВСD боковые стороны AB и CD равны, CH — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 12, а меньшее основание BC равно 4.
Ответы
Автор ответа:
0
1) Проведем высоту ВН1.
2) ∆АВН1= ∆DСН (по гипотенузе и катету) ⇒АН1=НD
3) Средняя линия КМ равна полусумме оснований. Т.е. KM=1/2*(BC+AD)=12. ВС=4, значит AD=20
4) AD=2HD+HH1. Так как ВН1 и СН- высоты, то НН1=ВС=4.
20=2НD+4
HD=8
Ответ:8.
2) ∆АВН1= ∆DСН (по гипотенузе и катету) ⇒АН1=НD
3) Средняя линия КМ равна полусумме оснований. Т.е. KM=1/2*(BC+AD)=12. ВС=4, значит AD=20
4) AD=2HD+HH1. Так как ВН1 и СН- высоты, то НН1=ВС=4.
20=2НD+4
HD=8
Ответ:8.
Похожие вопросы
Предмет: Другие предметы,
автор: SafariGo
Предмет: Математика,
автор: zhanarashintaeva
Предмет: Биология,
автор: Аноним
Предмет: Математика,
автор: nastyushkiin
Предмет: Экономика,
автор: 12we452012