Предмет: Геометрия, автор: Аноним

На полуокружности АВ взяты точки C и D так,что дуга АC=37 градусов,дуга BD=23 градуса.Найдите хорду CD ,если радиус окружности равен 15 см.Сделайте плз с чертежом и как можно понятнее каждое действие.По теореме пифагора 

Ответы

Автор ответа: Аноним
0

дуга АC=37  -центральный угол АОС=37

дуга BD=23 --центральный угол АОС=37=23

тогда -центральный угол СОD=180-37-23=120

 

В  треугольнике СОD  сторона (хорда)CD

треугольник СОD  -равнобедренный ОС=ОD=R=15

построим высоту к стороне CD, тогда СК=КD

высота ОК делит угол COD пополам КОD=120/2=60

рассмотрим треугольник  ОКD-прямоугольный

в нем OD-гипотенуза,  ОK-катет

ОК=OD*cosKOD=R*cos60=15*1/2=15/2 см

По теореме Пифагора KD^2=OD^2-OK^2=15^2-(15/2)^2=15^2(1-1/4)=15^2*3/4

тогда КD=15*√3/2

хорда CD=2KD=2*15*√3/2=15√3

Ответ хорда CD=15√3

Похожие вопросы
Предмет: История, автор: xan03
Предмет: Русский язык, автор: sajhaslamovaajnura