1.В арифметической прогрессии S4= 42 и S8= 132. Найдите a1 и d.
2.Разложите на множетели: 5aX*x - 10ax - bx + 2b - x + 2. X*x это х в квадр.
3.Решите систему неравенств: 2x-1x+1<1 и 2x+1>0
4.Найти |вектор a + вектор b|, если |вектор a| =11, | вектор b| =23, и | вектор a - вектор b|=30
Ответы
1.
S4=2(2a1+3d)=42,
S8=4(2a1+7d)=132,
4a1+6d=42,
8a1+28d=132,
-8a1-12d=-84,
8a1+28d=132,
16d=48,
d=3,
4a1+18=42,
4a1=24,
a1=6.
2.
5ax^2 - 10ax - bx + 2b - x + 2=5ax(x-2)-b(x-2)-(x-2)=(x-2)(5ax-b-1).
3.
2x - 1/x + 1 < 1,
2/x + 1 > 0,
(2x^2-1)/x<0,
(2+x)/x>0,
x≠0,
x(√2x-1)(√2x+1)<0,
x(x+2)>0,
x(√2x-1)(√2x+1)=0,
x1=-1/√2, x2=0, x3=1/√2,
x∈(-∞;-1/√2)U(0;1/√2),
x(x+2)=0,
x1=-2, x2=0,
x∈(-∞;-2)U(0;+∞),
x∈(-∞;-2)U(0;1/√2).
4.
|a|=sqrt(a_x^2+a_y^2)=11, (|a|)^2=a_x^2+a_y^2=121,
|b|=sqrt(b_x^2+b_y^2)=23, (|b|)^2=b_x^2+b_y^2=529,
|a-b|=sqrt((a_x-b_x)^2+(a_y-b_y)^2)=30,
(|a-b|)^2=(a_x-b_x)^2+(a_y-b_y)^2=a_x^2-2a_x b_x+b_x^2+a_y^2-2a_y b_y+b_y^2=(|a|)^2+(|b|)^2-2a_x b_x-2a_y b_y=900,
2a_x b_x+2a_y b_y=(|a|)^2+(|b|)^2-(|a-b|)^2=121+529-900=-250
|a+b|=sqrt((a_x+b_x)^2+(a_y+b_y)^2),
(|a+b|)^2=(a_x+b_x)^2+(a_y+b_y)^2=a_x^2+2a_x b_x+b_x^2+a_y^2+2a_y b_y+b_y^2=(|a|)^2+(|b|)^2+2a_x b_x+2a_y b_y=121+529-250=400,
|a+b|=20.