найдите наименьшее и наибольшее значения функции y=1/3*x^3 - 3/2*x^2 + 1 на отрезке [-1; 1].решите плиз дам 100 баллов.и еще Исследуйте функцию y=x^2//x - 2. (//- дробь) на монотонность и экстремумы.
Ответы
1)находим производную: f`(y)=x^2-3x
приравниваем к нулю и решаем: x(x-3)=0
x=0 или x=3
подставляем значения -1,0,1,3 в условие
f(-1)=-1/3-3/2+1=-1/3-1/2=-5/6
f(0)=1
f(1)=1/3-3/2+1=1/3-1/2=-1/6
f(3)=1/3*27-3/2*9+1= 9-13.5+1=-3.5
наименьшее значение: -3.5
наибольшее: 1
2)снова находим производную: f`(y)=2x
приравниваем к 0: 2х=0
х=0
убывает (от -бесконечности до 0)
возрастает (от 0 до бесконечности)
Критические точки функции, в которых она меняет возрастание на убывание или убывание на возрастание, называются точками экстремума.
значит точка экстремума=0