Предмет: Математика,
автор: Аноним
помогите решить, пожалуйста*
сфера проходит через вершины квадрата ABCD сторона которого равна 12 см. Найдите расстояние от центра сферы - точки o до плоскости квадрата если радиус OD образует с плоскостью квадрата угол, равный 60
Ответы
Автор ответа:
0
Так как все точки квадрата лежат на сфере, то они равноудалены от точки О. Значит пирамида ОABCD - правильная, О - ее вершина. Тогда проекция О на плоскость ABCD - точка пересечения диагоналей (обозначим ее точкой Н).
ОН - искомое расстояние. Проекция OD на плоскость квадрата - отрезок DH, значит угол ODH = 60 градусов. DH - половина диагонали квадрата (вся диагональ равна 12 корней из 2), то есть DH = 6 корней из 2.
tg(ODH) = OH/DH, OH = DH*tg(OGH) = (6 корней из 2)*(тангенс 60 градусов) = (6 корней из 2)*(корень из 3) = 6 корней из 6.
Ответ:
ОН - искомое расстояние. Проекция OD на плоскость квадрата - отрезок DH, значит угол ODH = 60 градусов. DH - половина диагонали квадрата (вся диагональ равна 12 корней из 2), то есть DH = 6 корней из 2.
tg(ODH) = OH/DH, OH = DH*tg(OGH) = (6 корней из 2)*(тангенс 60 градусов) = (6 корней из 2)*(корень из 3) = 6 корней из 6.
Ответ:
Похожие вопросы
Предмет: Математика,
автор: pegovmesha
Предмет: Математика,
автор: bakhrombakirov237
Предмет: Обществознание,
автор: kolqqqq11
Предмет: Математика,
автор: tghtgh
Предмет: Математика,
автор: kristi125