Предмет: Геометрия, автор: kosolovadara

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно AC=36, MN=27. Площадь треугольника ABC равно 96. Найди площадь треугольника MBN.

Ответы

Автор ответа: rindenley
0

Ответ:

надеюсь понятно

Объяснение:

Для начала обратим внимание, что треугольники \(ABC\) и \(MNB\) подобны. Почему? Поскольку прямая \(MN\) параллельна стороне \(AC\) треугольника \(ABC\), соответствующие углы равны (по свойству параллельных прямых).

Таким образом, у треугольников \(ABC\) и \(MNB\) соответствующие углы равны, а значит, они подобны.

Отношение площадей подобных треугольников равно квадрату отношения соответствующих сторон.

Площадь треугольника \(ABC\) равна 96, а отношение сторон \(AC\) к \(MN\) равно \(\frac{36}{27} = \frac{4}{3}\).

Теперь, чтобы найти площадь треугольника \(MNB\), нужно вспомнить, что отношение площадей подобных треугольников равно квадрату отношения соответствующих сторон.

Отношение площадей \(ABC\) и \(MNB\) равно \(\left(\frac{4}{3}\right)^2 = \frac{16}{9}\).

Площадь \(MNB = \frac{16}{9} \times 96 = \frac{1536}{9} = 170 \frac{2}{3}\).

Похожие вопросы
Предмет: Математика, автор: arnazhumagaliyeva