Предмет: Алгебра, автор: pypsik200000

Доведіть, що число 9 ^ 7 + 3 ^ 11 - 3 ^ 13 кратне числу 19.

Ответы

Автор ответа: persikirina400
0

Ответ:

Спростимо вираз: \(9^7 + 3^{11} - 3^{13} = 9^7 + 3^{11} \cdot (1 - 3^2)\).

Тепер розділимо обидва доданки на 19, щоб показати кратність:

\(9^7\) (mod 19) + \(3^{11} \cdot (1 - 3^2)\) (mod 19).

Для \(9^7\) (mod 19), зауважимо, що \(9^2\) (mod 19) = 9. Таким чином, \(9^7\) (mod 19) = \(9^{2 \cdot 3 + 1}\) (mod 19) = \((9^2)^3 \cdot 9\) (mod 19) = 9.

Для \(3^{11} \cdot (1 - 3^2)\) (mod 19), пам'ятайте, що \(3^2\) (mod 19) = 9. Таким чином, \(3^{11} \cdot (1 - 3^2)\) (mod 19) = \(3^2 \cdot (3^9 \cdot (1 - 9))\) (mod 19) = \(9 \cdot (3^9 \cdot (-8))\) (mod 19).

Тепер розглянемо \(3^9\) (mod 19). \(3^3\) (mod 19) = 8, тому \(3^9\) (mod 19) = \((3^3)^3\) (mod 19) = \(8^3\) (mod 19) = 17.

Отже, \(9 \cdot (3^9 \cdot (-8))\) (mod 19) = \(9 \cdot (17 \cdot (-8))\) (mod 19) = \(9 \cdot (-136)\) (mod 19).

Тепер врахуємо \(9 \cdot (-136)\) (mod 19). \(9 \cdot (-136)\) (mod 19) = \((-1224)\) (mod 19) = 0.

Отже, весь вираз \(9^7 + 3^{11} - 3^{13}\) кратний числу 19.

Похожие вопросы
Предмет: Литература, автор: ilkin845
Предмет: Қазақ тiлi, автор: aablgazieva