Фабрика випускає 75% продукції першим сортом. Знайти
ймовірність того, що з 300 виробів, виготовлених фабрикою, число
першосортних виробів буде: а) не менше 250; б) від 220 до 235; в) не більше
200.
Ответы
Ответ:
Давайте вирішимо це за допомогою біноміального розподілу, оскільки ми маємо два можливих результати (першосортний або не першосортний) та фіксовану ймовірність успіху (вироби першого сорту).
Ймовірність успіху (першосортний виріб) p = 0.75,
Ймовірність невдачі (не першосортний виріб) q = 1 - p = 0.25,
Кількість випробувань n = 300.
a) Ймовірність того, що число першосортних виробів буде не менше 250:
\[ P(X \geq 250) = 1 - P(X < 250) \]
Використовуючи нормальне наближення для біноміального розподілу, можна використовувати формулу стандартного нормального розподілу для обчислення ймовірностей.
b) Ймовірність того, що число першосортних виробів буде від 220 до 235:
\[ P(220 \leq X \leq 235) = P(X \leq 235) - P(X < 220) \]
c) Ймовірність того, що число першосортних виробів буде не більше 200:
\[ P(X \leq 200) \]
Давайте обчислимо ці ймовірності.