Предмет: Геометрия, автор: alrdjjsiskdkdkdid

даю 30 баллов
У трикутнику АВС точка М лежить на стороні АС, ∠AMB = ∠CMB, ABM= ∠CBM=35⁰, АВ=12 см, АС = 8 см. Знайдіть довжини відрізків ВС і СМ і градусну міру кута ∠С.​

Ответы

Автор ответа: svyatoslavzaporoschu
2

Ответ:

Давайте решим эту задачу.

Начнем с нахождения длины отрезка ВС. Мы можем использовать теорему косинусов для этого. Найдем длину отрезка ВС, используя косинус угла ∠А:

AC

^2 = AM^2 + MC^2 - 2 * AM * MC * cos(∠C) Учитывая, что ∠AMB = ∠CMB, мы можем заменить AM и MC, и тогда:

AC^2 = CM^2 + MC^2 - 2 * MC^2 * cos(∠C) Таким образом, мы можем выразить длину отрезка СМ через длины сторон треугольника и косинус угла ∠C.

Далее, для нахождения длины отрезка СМ, мы можем использовать теорему синусов. Зная длины сторон треугольника и угол ∠C, мы можем найти длину отрезка СМ.

Наконец, чтобы найти градусную меру угла ∠C, мы можем использовать свойства треугольников и углов. Мы знаем, что ∠ABM = ∠CBM = 35⁰, таким образом, мы можем найти градусную меру угла ∠C, используя свойства углов треугольника.

После выполнения этих шагов мы сможем найти длины отрезков ВС и СМ, а также градусную меру угла ∠C.

Похожие вопросы
Предмет: Математика, автор: kki051112
Предмет: Физика, автор: abduragimovgulmagome